Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38017708

RESUMO

Analysis of the musculoskeletal movements (gait analysis) is needed in many scenarios. The in vivo method has some difficulties. For example, recruiting human subjects for the gait analysis is challenging due to many issues. In addition, when plenty of subjects are required, the follow-up experiments take a long period and the dropout of subjects always occurs. An efficient and reliable in silico simulation platform for gait analysis has been desired for a long time. Therefore, a technique using three-dimensional (3D) muscle modeling to drive the 3D musculoskeletal model was developed and the application of the technique in the simulation of lower limb movements was demonstrated. A finite element model of the lower limb with anatomically high fidelity was developed from the MRI data, where the main muscles, the bones, the subcutaneous tissues, and the skin were reconstructed. To simulate the active behavior of 3D muscles, an active, fiber-reinforced hyperelastic muscle model was developed using the user-defined material (VUMAT) model. Two typical movements, that is, hip abduction and knee lifting, were simulated by activating the responsible muscles. The results show that it is reasonable to use the improved CFD-FE method proposed in the present study to simulate the active contraction of the muscle, and it is feasible to simulate the movements by activating the relevant muscles. The results from the present technique closely match the physiological scenario and thus the technique developed has a great potential to be used in the in silico human simulation platform for many purposes.

2.
Pharmacol Res ; 196: 106939, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758101

RESUMO

Photothermal therapy (PTT) is a promising antitumor treatment that is easy to implement, minimally invasive, and precisely controllable, and evokes strong antitumor immunity. We believe that a thorough elucidation of its underlying antitumor immune mechanisms would contribute to the rational design of combination treatments with other antitumor strategies and consequently potentiate clinical use. In this study, PTT using indocyanine green (ICG) induced STING-dependent type I interferon (IFN) production in macrophages (RAW264.7 and bone marrow-derived macrophages (BMDMs)), as proven by the use of a STING inhibitor (C178), and triggered STING-independent type I IFN generation in tumor cells (CT26 and 4T1), which was inhibited by DNase pretreatment. A novel liposome coloaded with the STING agonist 2'3'-cGAMP (cGAMP) and chloroquine (CQ) was constructed to achieve synergistic effect with PTT, in which CQ increased cGAMP entrapment efficiency and prevented STING degradation after IFN signaling activation. The sequential combination treatment caused a significant increase in tumor cell apoptosis, probably due to interferon stimulating gene products 15 and 54 (ISG15 and ISG 54), and achieved a more striking antitumor inhibition effect in the CT26 tumor model than the 4T1 model, likely due to higher STAT1 expression and consequently more intense IFN signal transduction. In the tumor microenvironment, the combination treatment increased infiltrating CD8+T cells (4-fold) and M1-like TAMs (10-fold), and decreased M-MDSCs (over 2-fold) and M2-like TAMs (over 4-fold). Above all, in-depth exploration of the antitumor mechanism of PTT provides guidance for selecting sensitive tumor models and designing reasonable clinical schemes.

3.
J Cell Commun Signal ; 17(4): 1283-1292, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37195382

RESUMO

Some acute inflammatory diseases are often exacerbated during or after hospitalization, leading to some severe manifestations like systemic inflammatory response syndrome, multiple organ failure, and high mortality. Early clinical predictors of disease severity are urgently needed to optimize patient management for better prognosis. The existing clinical scoring system and laboratory tests cannot circumvent the problems of low sensitivity and limited specificity. Extracellular vesicles (EVs) are heterogeneous nanosecretory vesicles containing various biomolecules related to immune regulation, inflammation activation, and inflammation-related complications. This review provides an overview of EVs as inflammatory mediators, inflammatory signaling pathway regulators, promoters of inflammatory exacerbation, and markers of severity and prognosis. Currently, although relevant biomarkers are clinically available or are in the preclinical research stage, searching for new markers and detection methods is still warranted, as the problems of low sensitivity/specificity, cumbersome laboratory operation and high cost still plague clinicians. In-depth study of EVs might open a door in the search for novel predictors.

4.
Mol Biomed ; 4(1): 15, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183207

RESUMO

The ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses is fundamental for maintaining immune homeostasis upon exposure to self or foreign antigens. The immune regulatory function of DCs is strictly controlled by their distribution as well as by cytokines, chemokines, and transcriptional programming. These factors work in conjunction to determine whether DCs exert an immunosuppressive or immune-activating function. Therefore, understanding the molecular signals involved in DC-dependent immunoregulation is crucial in providing insight into the generation of organismal immunity and revealing potential clinical applications of DCs. Considering the many breakthroughs in DC research in recent years, in this review we focused on three basic lines of research directly related to the biological functions of DCs and summarized new immunotherapeutic strategies involving DCs. First, we reviewed recent findings on DC subsets and identified lineage-restricted transcription factors that guide the development of different DC subsets. Second, we discussed the recognition and processing of antigens by DCs through pattern recognition receptors, endogenous/exogenous pathways, and the presentation of antigens through peptide/major histocompatibility complexes. Third, we reviewed how interactions between DCs and T cells coordinate immune homeostasis in vivo via multiple pathways. Finally, we summarized the application of DC-based immunotherapy for autoimmune diseases and tumors and highlighted potential research prospects for immunotherapy that targets DCs. This review provides a useful resource to better understand the immunomodulatory signals involved in different subsets of DCs and the manipulation of these immune signals can facilitate DC-based immunotherapy.

5.
Plant Dis ; 106(10): 2730-2740, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36094426

RESUMO

As the excessive use of chemical fertilizers harms organisms and adversely affects the soil environment, the replacement of chemical fertilizers with biological fertilizers has attracted widespread attention as an environmental protection strategy. In this study, the effects of rhizosphere bacteria inoculation on growth of Pinus sylvestris var. mongolica seedlings, soil parameters, soil microbial community structure, and the biocontrol of damping-off were studied by pot experiments. The results showed that all three rhizosphere bacteria (Pseudomonas chlororaphis, Pseudomonas extremaustralis, and Acinetobacter lwoffii A07) tested exhibited growth-promoting properties, such as the production of indole-3-acetic acid, hydrolase, siderophores, and hydrogen cyanide; nitrogen fixation; and phosphorus solubilization. The application of the three bacteria increased plant biomass, root structure, and nutrient content and also increased soil nutrient content and enzyme activity. Bacterial inoculation promoted the growth of beneficial bacteria and antagonistic bacteria by adjusting the physicochemical properties of the soil, thereby improving the bacterial community structure. Among the soil features, available nitrogen, total nitrogen, available potassium, and urease activity were the main influencing factors. In addition, it was also found that bacterial inoculation significantly increased the activities of plant superoxide dismutase, catalase, peroxidase, and other defense enzymes; enhanced plant disease resistance; effectively inhibited damping-off; and promoted plant growth. In summary, the application of three rhizosphere bacteria systematically affected the interaction between plants, soil parameters, and soil microbial communities. These results provide a basis for understanding how rhizosphere bacteria promote the growth of P. sylvestris var. mongolica, thereby offering a promising sustainable alternative to chemical fertilizers.


Assuntos
Microbiota , Pinus sylvestris , Bactérias , Catalase , Fertilizantes , Cianeto de Hidrogênio , Nitrogênio/análise , Fósforo , Potássio , Rhizoctonia , Plântula/química , Sideróforos , Solo/química , Superóxido Dismutase , Urease
6.
Front Immunol ; 13: 988481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119103

RESUMO

High sugar intake has long been recognized as a potential environmental risk factor for increased incidence of many non-communicable diseases, including obesity, cardiovascular disease, metabolic syndrome, and type 2 diabetes (T2D). Dietary sugars are mainly hexoses, including glucose, fructose, sucrose and High Fructose Corn Syrup (HFCS). These sugars are primarily absorbed in the gut as fructose and glucose. The consumption of high sugar beverages and processed foods has increased significantly over the past 30 years. Here, we summarize the effects of consuming high levels of dietary hexose on rheumatoid arthritis (RA), multiple sclerosis (MS), psoriasis, inflammatory bowel disease (IBD) and low-grade chronic inflammation. Based on these reported findings, we emphasize that dietary sugars and mixed processed foods may be a key factor leading to the occurrence and aggravation of inflammation. We concluded that by revealing the roles that excessive intake of hexose has on the regulation of human inflammatory diseases are fundamental questions that need to be solved urgently. Moreover, close attention should also be paid to the combination of high glucose-mediated immune imbalance and tumor development, and strive to make substantial contributions to reverse tumor immune escape.


Assuntos
Diabetes Mellitus Tipo 2 , Xarope de Milho Rico em Frutose , Diabetes Mellitus Tipo 2/etiologia , Frutose/efeitos adversos , Glucose , Humanos , Inflamação , Sacarose , Açúcares
7.
Mater Today Bio ; 14: 100226, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35308042

RESUMO

Background: Sever acute pancreatitis (SAP) is a critical disease with high mortality, and lack of clinically available treatments with specificity and effectiveness. Bone marrow derived mesenchymal stem cells (BMSCs) exhibited moderate effect on AP which needs further improvement. Methods: Pancreatic infiltrating lymphocytes were analyzed to demonstrate the intervention of BMSCs on inflammatory cell infiltration of AP. Gene silencing with siRNA and small molecule inhibitor were utilized to determine the key effector molecule of BMSCs on AP. Pharmacological regulation and nanotechnology were introduced to further ameliorate BMSCs action. Results: It was revealed that BMSCs prevent the progression of acute pancreatitis (AP) by reducing recruitment of macrophages, neutrophils and CD4+T cells in the lesion site. The pivotal role of chemokine-iNOS-IDO axis for BMSCs to intervene AP was confirmed. Compared with any single drug, Chloroquine/Tamoxifen combination together with IFN-γ pronouncedly up-regulated the transcription of several MSC immune regulators such as COX-2, PD-L1, HO-1 especially iNOS/IDO. As expected, BMSCs and human umbilical cord mesenchymal stem cells (UMSCs) pretreated with CQ/TAM/IFN-γ exerted enhanced intervention in AP and SAP mice. Moreover, pretreatment with CQ-LPs/TAM-NPs combination not only counteracted MSCs proliferation inhibition induced by free drugs but also enhanced their efficacy. Conclusion: Under the background of rapid progress in MSCs clinical translation, this study focuses on the urgent clinical issue and initiates an original mechanism-based strategy to promote intervention on severity progression of SAP, which promises its clinical translation in future.

8.
PeerJ ; 10: e12778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127284

RESUMO

Fritillaria wilt is a kind of soil-borne disease that causes a large reduction in the yield of Fritillaria ussuriensis. The diversity and structure of the soil microbial community are important factors affecting the health of Fritillaria ussuriensis. The analysis of the microbial community in the diseased and healthy soils provided a theoretical basis for revealing the pathological mechanism and prevention of Fritillaria wilt disease. In the present study, we sequenced the soil microorganisms from healthy (H), pathology (P) and blank (B) soil samples by Illumina MiSeq. Determined the soil physicochemical properties respectively, analyzed the soil microbial diversity and structure, and constructed single factor co-correlation networks among microbial genera. The results showed that Ascomycota (48.36%), Mortierellomycota (23.06%), Basidiomycota (19.00%), Proteobacteria (31.74%), and Acidobacteria (20.95%) were dominant in the soil. The diversity of healthy soil was significantly greater than that of diseased soil samples (P and B) (P < 0.05). The populations of Fusarium and Humicola significantly increased in the diseased soil sample (P and B) (P < 0.05). RB41 (4.74%) and Arthrobacter (3.30%) were the most abundant genera in the healthy soil. Total nitrogen (TN), available nitrogen (AN), total potassium (TK), available potassium (AK), and inorganic salt (salt) were significantly correlated with soil microbial communities (P < 0.05). The relationship between fungi and the plant was mostly positive, whereas bacteria showed the opposite trend. In conclusion, the diversity and structure of the soil microbial community were closely related to the health level of Fritillaria ussuriensis. Fusarium and Humicola affect the severity of Fritillaria wilt disease, while RB41 and Arthrobacter are the important indicators for maintaining the health of Fritillaria ussuriensis. Moreover, environmental factors greatly affect the abundance and formation of soil microbial community. The interactions in microbial communities also influence the healthy growth of Fritillaria ussuriensis.


Assuntos
Ascomicetos , Fritillaria , Fusarium , Microbiota , Solo/química , Rizosfera , Microbiota/genética , Nível de Saúde
9.
Nanoscale ; 13(37): 15789-15803, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34528979

RESUMO

The immunosuppressive tumor microenvironment has become a formidable obstacle to the treatment of tumors using adoptive T cell therapy, in particular solid tumors. For the purposes of addressing this issue, effector OT-1 CD8+T cells conjugated with liposomal immune regulators (CD8-T-LP-CpG/CD8-T-LP-BMS-202) were developed. An anionic liposome formulation was employed to avoid T cell aggregation and prevent unfavorable side-effects. The inclusion of EGCG in the LP-CpG formulation facilitated the formation of compact complexes with poly lysine (PLL) and is thus expected to increase the stability. CD8-T-LP-CpG administered with a median dose of CpG (20 µg per mouse) markedly reduced the frequency of tumor infiltrating polymorphonuclear leukocyte myeloid-derived suppressor cells (PMN-MDSCs) (20-folds), M2-like macrophages (8-folds), regulatory T-cells (Treg) (2.7-folds), and consequently increased the frequency of cytotoxic CD8+T cells in tumor-infiltrating lymphocytes (TILs) (2-folds) and splenic effector memory CD8+T cells (3-folds) relative to the phosphate buffered saline (PBS) control group. Furthermore, the absolute number of tumor infiltrating lymphocyte subtypes altered followed a consistent trend. The difference remained significant compared to the OT-1 CD8+T cells and the drug-loaded liposome combination group. According to in vivo imaging of CD8-T-LP-DiD, we assumed that the improvement in regulation of the tumor microenvironment of LP-CpG/LP-BMS-202 was attributed to the enhanced drug transportation to the tumor site aided by tumor-specific OT-1 CD8+T cells. In addition, CD8-T-LP-BMS-202 administered with a low dose of BMS-202 (1.5 mg per kg body weight) exerted a dramatically improved therapeutic effect by reducing the tumor infiltrating PMN-MDSCs and M2-like macrophages and the corresponding promoted cytotoxic CD8+T cell recruitment in the TILs and effector memory CD8+T cells mediated anti-tumor immunity. In summary, immune therapy drugs backpacked onto adoptive T cell therapy provides a feasible strategy to improve the therapeutic effect and could result in future clinical translation.


Assuntos
Melanoma , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos , Imunoterapia , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL
10.
Plants (Basel) ; 9(7)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707691

RESUMO

Trichoderma is a filamentous fungus that is widely distributed in nature. As a biological control agent of agricultural pests, Trichoderma species have been widely studied in recent years. This study aimed to understand the inhibitory mechanism of Trichoderma virens ZT05 on Rhizoctonia solani through the side-by-side culture of T. virens ZT05 and R. solani. To this end, we investigated the effect of volatile and nonvolatile metabolites of T. virens ZT05 on the mycelium growth and enzyme activity of R. solani and analyzed transcriptome data collected from side-by-side culture. T. virens ZT05 has a significant antagonistic effect against R. solani. The mycelium of T. virens ZT05 spirally wraps around and penetrates the mycelium of R. solani and inhibits the growth of R. solani. The volatile and nonvolatile metabolites of T. virens ZT05 have significant inhibitory effects on the growth of R. solani. The nonvolatile metabolites of T. virens ZT05 significantly affect the mycelium proteins of R. solani, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), selenium-dependent glutathione peroxidase (GSH-Px), soluble proteins, and malondialdehyde (MDA). Twenty genes associated with hyperparasitism, including extracellular proteases, oligopeptide transporters, G-protein coupled receptors (GPCRs), chitinases, glucanases, and proteases were found to be upregulated during the antagonistic process between T. virens ZT05 and R. solani. Thirty genes related to antibiosis function, including tetracycline resistance proteins, reductases, the heat shock response, the oxidative stress response, ATP-binding cassette (ABC) efflux transporters, and multidrug resistance transporters, were found to be upregulated during the side-by-side culture of T. virens ZT05 and R. solani. T. virens ZT05 has a significant inhibitory effect on R. solani, and its mechanism of action is associated with hyperparasitism and antibiosis.

11.
Plants (Basel) ; 9(7)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698328

RESUMO

Dark septate endophytes (DSEs) exert a vital role in promoting plant growth, improving mineral absorption, biological disease control, and enhancing plant stress resistance. The effects of dark septate endophyte strain, Phialocephala bamuru A024 on damping-off biocontrol, plant development, nutrients within the rhizosphere soil, as well as bacterial communities in the annual seedlings of P. sylvestris var. Mongolica were studied. According to our findings, following P. bamuru A024 inoculation, the damping-off disease morbidity decreased significantly compared with control, some physiological indices such as ß-1,3-glucanase, chitinase enzyme activity as well as a soluble protein and proline content in P. sylvestris var. mongolica were elevated under R. solani stress. After inoculation with P. bamuru A024, the biomass in seedlings, nutrients in soil, root structure index, together with activities of soil enzymes were remarkably up-regulated relative to control (p < 0.05). As suggested by the results of high-throughput sequencing, the microbial structure in the rhizosphere soil of the P. sylvestris var. mongolica showed significant differences (p < 0.05) after P. bamuru A024 inoculation compared to control treatment and the rhizosphere soil bacterial community structure after DSE A024 inoculation was positively correlated to the main soil nutrition indices.

12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 26(6): 1752-1756, 2018 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-30501716

RESUMO

OBJECTIVE: To analyze the changes of DC subsets and the expression of CD80 and CD86 in peripheral blood of ITP patients and their correlation with dexamethasone efficacy. METHODS: Peripheral blood sample of 80 cases of ITP and 20 normal controls from June 2015 to June 2017 in our hospital were retrospectively analyzed. The specific distribution of DC subsets in the peripheral blood of all the subjects was detected by flow cytometry, and the expressions of CD80 and CD86 were detected by ELISA. RESULTS: The proportion of DC2 in DC subsets of ITP patients before treatment was significantly higher than that in normal control group (P<0.05). The proportion of DC2 in DC subset of ITP patients was still significantly higher than that of the control group (P<0.05). The level of CD80 expression on DC1 and DC2 in ITP patients before treatment was significantly higher than that in the normal control group (P<0.05), and the expression level of CD86 on DC2 was significantly higher than that of the normal control group (P<0.05). Both IL-2 and IFN- γ levels in the patients before the treatment were significantly higher than those in the normal control group (P<0.05), and the expression levels after treatment with dexamethasone decreased significantly. Before treatment, both IL-4 and IL-10 levels in ITP patients were significantly lower than those in the normal control group (P<0.05), and their expression levels after treatment with dexamethasone significantly increased (P<0.05). CONCLUSION: The incidence of ITP patients closely relates with the level and dysfunction of DC subsets in peripheral blood and the expression levels of IL-2, IL-4, IL-10, IFN- γ, which significantly correlates with the efficacy of dexamethasone.


Assuntos
Células Dendríticas , Antígeno B7-1 , Dexametasona , Humanos , Inosina Trifosfato , Estudos Retrospectivos
13.
Sheng Wu Gong Cheng Xue Bao ; 25(4): 566-74, 2009 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-19637633

RESUMO

Vampire bat saliva contains a plasminogen activator that presumably assists these hematophagous animals during feeding. Bat-PA (H), the full-length form of Vampire Bat Salivary Plasminogen Activator (DSPAalpha1), is homologous and similar efficacy to tissue-type plasminogen activator (t-PA). The strict fibrin dependence of activity is a characteristic which could be desirable in the fibrinolytic therapy. It is a unique fibrinolytic enzyme that does not promote neurodegeneration. In this study, according to the reported gene sequence (GenBank Accession No. J05082) of Vampire bat (D. rotundus) plasminogen activator. It was the first time to synthesize the full sequence of DSPAalpha1 in vitro and clone it into the expression vector pPIC9K, the recombinant plasmid was linearized and transformed into Pichia pastoris GS115 strain. Secreted expression of recombinant DSPAalpha1 was attained by methanol induction and its molecular mass is 47 kD. To get recombinant GS115 with high amount of protein, hundreds of His+ transformants had been screened to isolate clones resistant to high levels G418 (2-4 mg/mL), the selected clones mini-expressed in Pichia pastoris, and tested their fibrinolytic activities and expressed protein bands by fibrin plate assay and SDS-PAGE. DSPAalpha1 was determined by optical density after SDS-PAGE, the yield is about 30 mg per liter of fermentation culture. DSPAalpha1 derived often from mammalian cells: Chinese hamster ovary (CHO) cells, Baby hamster kidney (BHK) cells, COS cells, which might be produced at high cost. In Pichia pastoris, it is expected to higher yield and lower cost, thus it might be able to serve as new thrombolytic candidate.


Assuntos
Vetores Genéticos/genética , Pichia/metabolismo , Ativadores de Plasminogênio/biossíntese , Proteínas Recombinantes/biossíntese , Animais , Sequência de Bases , Quirópteros/genética , Dados de Sequência Molecular , Pichia/genética , Ativadores de Plasminogênio/genética , Proteínas Recombinantes/genética , Recombinação Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...